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Abstract. Low level optimisations from conventional compiler technol-
ogy often give very poor results when applied to code from lazy func-
tional languages, mainly because of the completely different structure
of the code, unknown control flow, etc. A novel approach to compiling
laziness is needed.

We describe a complete back end for lazy functional languages, which
uses various interprocedural optimisations to produce highly optimised
code. The main features of our new back end are the following. It uses
a monadic intermediate code, called GRIN (Graph Reduction Interme-
diate Notation). This code has a very “functional flavour”, making it
well suited for analysis and program transformations, but at the same
time provides the “low level” machinery needed to express many con-
crete implementation concerns. Using a heap points-to analysis, we are
able to eliminate most unknown control flow due to evals (i.e., forcing of
closures) and applications of higher order functions, in the program. A
transformation machinery uses many, each very simple, GRIN program
transformations to optimise the intermediate code. Eventually, the GRIN
code is translated into RISC machine code, and we apply an interpro-
cedural register allocation algorithm, followed by many other low level
optimisations. The elimination of unknown control flow, made earlier,
will help a lot in making the low level optimisations work well.
Preliminary measurements look very promising: we are currently twice as
fast as the Glasgow Haskell Compiler for some small programs. Our ap-
proach still gives us many opportunities for further optimisations (though
yet unexplored).

1 Introduction

Although the execution speed of programs written in a lazy functional language,
like Haskell, have increased substantially since these languages first appeared, it
is still the case that they are slower and consume more memory than imperative
programs, in almost all cases.

The reason for functional programs being so slow, is, of course, that functional
languages in general, and lazy languages in particular, are so abstract and “far



from the machine”. Thus, it is very hard for the compiler to optimise the program
with good results. Put in another way, we can say that the laziness has a, not
negligible, runtime cost.

One of the purposes of this paper is to show how this cost can be reduced by
doing more aggressive optimisations than current compilers do. As part of that
we will attack the well known problem that conventional (imperative) compiler
optimisations do not apply very well to code produced from a lazy functional
language, or, if they apply, produce far from satisfactory results. As we will later
show, one important reason for this is the laziness, or rather those properties of
the generated code that encode the lazy evaluation strategy (e.g. building and
forcing delayed computations).

Our first, and most important, principle for solving this problem is to do in-
terprocedural optimisation, i.e., we let the compiler optimise several procedures
together (currently the whole program at once). This should be seen in contrast
to the standard method of global optimisation, where only one procedure is opti-
mised at a time,! a method that is often quite sufficient for imperative programs.
This will be explained in more detail in section 2.

In this paper we will describe a novel back end for a compiler for a lazy
functional language. The most interesting features of this back end are:

— It is interprocedural, aiming at much more aggressive optimisations than
current compilers do.

— The intermediate code, called GRIN (Graph Reduction Intermediate Nota-
tion), has a very “functional flavour”, which makes it well suited for analysis
and program transformations. But, at the same time, it has the “low level
control” that is needed.

— Using a two step process: a heap points-to analysis + a single GRIN pro-
gram transformation, we are able to eliminate most unknown control flow
(or actually give a good approximation to the real control flow), by inlining
calls of eval and apply, in the program.

— The GRIN code is compiled (and optimised) using a series of, each very sim-
ple, GRIN source-to-source program transformations, which taken together
will produce greatly simplified code.

— With the GRIN transformations as a basis, the resulting (machine) code
will be of a form that is suitable for conventional optimisation techniques. In
particular we use an interprocedural register allocation algorithm, developed
especially with call intensive languages in mind.

The organisation of the rest of this paper is as follows. In section 2 we elab-
orate on the problem of implementing lazy evaluation, and try to motivate why
interprocedural compilation is so important. Then, in section 3, we describe the
overall structure of our compiler, and back end. In sections 4 to 7 we introduce
the intermediate code, GRIN, and describe how it is compiled and optimised
using program transformations. The particular heap analysis used is discussed

! We use these terms as found in most compiler literature, i.e. global does not really
mean global. ..



main = sum (upto 1 10)

upto m n = if m > n then []
else m : upto (m+1l) n

sum 1 = case 1 of [] ->0
(x:xs) -> x + sum xs

Fig. 1. A small program, summing the numbers from 1 to 10.

in section 8. After all GRIN transformations, the code is translated into real ma-
chine code, described in section 9, and a number of low level optimisations are
applied; the register allocation is described in section 10 and an overview of the
other optimisations is given in section 11. We present some preliminary results
in section 12. Finally, we conclude with related work and further development
of our back end.

2 Lazy evaluation

To explain why lazy evaluation hinders optimisation and to show how interpro-
cedural compilation can be a first step in solving this we will discuss a small
example, the program in figure 1. This program will also be used as the running
example throughout this paper.

The program is written using a syntax similar to Haskell. If we had written
this program in an imperative language (and using an imperative style) we would
most certainly have used real loops to sum the numbers, because we know that
imperative compilers are good at optimising loops, and often rather poor at
optimising procedure calls.

If we imagine the program as written in a strict functional language, its
execution would result in a call graph as the one in figure 2.

We define a node in the call graph as the union
of all invocations of the corresponding function.

An arc in the call graph means that a function @

call may occur in the direction of the arrow. Note

that call graphs are approximations to what will

happen in an execution of the program (but always ‘@ @’
safe approximations).

Returning to our example program, the strict pjg 2. The “strict” call graph
call graph illustrates what will happen in a strict
execution of the program. The main function will call the upto function which
will produce a list of numbers. The upto function will create this list using
recursion (i.e. a kind of loop). It will eventually return to main, which will directly
call sum. The sum function will consume the list, also using recursion, and sum
up the numbers (i.e a second loop). In this strict version of the program, the two



loops are still quite “visible”. We could imagine a compiler noticing that both
sum and upto make recursive calls, and try to optimise this “as a loop”.

However, if we turn to the call graph for the same program when executed
in a lazy language it will look quite different, and much less attractive from a
compilers point of view (figure 3).

Here, we imagine a standard implementation
of lazy evaluation using graph-reduction. One
additional procedure is added to the call graph, @
the special eval procedure. This is the proce-
dure used to force (or evaluate) a suspended
computation. Even though this is normally hid- @
den in the runtime system of an implementa- ‘ ‘
tion, we can think of eval as an ordinary pro- @ @
cedure, which will turn its argument into weak
head normal form. If, in the call graph, a partic-
ular procedure calls eval it will mean that the
procedure needs the value of a closure (which might be a suspended computa-
tion). On the other hand, if eval calls a procedure, it means that a suspended
computation of that procedure was forced (by someone else).

There are a number of different ways to implement and optimise this “forcing”
(see for example [Joh84,PJ92]), but they all have one thing in common: the code
will have to do an “unknown call” when it is faced with a suspended computation.
By this we mean that it is unknown at compile time to which procedure such a
call will jump. In our call graphs this will be seen as first a “call” to eval, and
then a new call from eval to the suspended procedure.

Unfortunately, these unknown calls are one of the main
reasons why conventional compiler optimisations will give so

Fig. 3. Original “lazy” call graph

poor results for lazy functional languages. When the compiler @
is faced with an unknown call (i.e. unknown control flow), it
will normally have to make the most pessimistic assumptions
possible, like for example not allowing any values to be held ‘@

in registers. And, since the functional programming style en-

courages “small” functions, it is not surprising that a global @
optimiser, that can only optimise the code between two calls
at a time, will give so poor results in most cases.

The consequence of this is that if we want to use con-
ventional optimisations effectively, we will have to eliminate
most (or all) of the “unknown control flow”. The way we do this is described in
section 5. Seen in the call graph, it will have the effect of completely eliminating
the eval procedure, and replacing each arc to eval with a safe superset of “real”
calls, i.e., arcs to ordinary procedures. After this, we will get the call graph in
figure 4.

This illustrates the “looping” behaviour that will actually happen in a lazy
evaluation of this program. The loop will be in the sum function (using recursion)
and, once each iteration, it will call the upto function to produce the next number

Fig. 4. Improved
“lazy” call graph



(i.e. a new cons cell). The call graph also makes clear the producer/consumer
relationship, that is so typical of lazy evaluation, between the upto and sum
functions. An aggressive optimiser that is allowed to optimise the sum and upto
functions together could take advantage of this knowledge and produce much
better code compared to the original program (with eval).

3 Our compiler

To be able to compile real Haskell programs, we use our back end in conjunction
with an already existing front end, hbcc, by Lennart Augustsson [unpublished].
Hbcc is a state of the art Haskell front end. Using hbcc we get well optimised
code in a “low level functional” style, comparable to for example the Core lan-
guage [PJ96| used by the Glasgow Haskell compiler. The code is lambda lifted,
i.e., has only super combinators, and most “high level” Haskell constructions,
like overloading, have been transformed away.

The structure of the back end (extended with hbcc) can be seen in figure 5.
The front end, i.e., hbcc, uses standard separate compilation. Qur back end
(which is a stand alone program) will collect the code produced from all hbec-
compiled files (for a program spread over several files) and optimise the whole
program at once. Thus, the entire system uses separate compilation in the front
end, whereas the GRIN back end (currently) need the whole program at once.

The first part of the back end uses the intermediate code, GRIN, and gradu-
ally transforms and optimises the code into a very simple form. After that, the
code is translated into machine code for a hypothetical RISC machine, and the
second part of the back end uses this RISC code. After the low level optimisa-
tions, the RISC code is finally “pretty printed” as assembler code for the Sparc
processor. However, the RISC code is not very Sparc-specific, so it would not be
a large project to generate code for a different processor. Also, the optimisations
done are mostly “generic” in nature, and would apply to any RISC processor.

4 GRIN - the intermediate code

The purpose of the GRIN intermediate code is the same as for the G-machine
[Joh84] code: to provide a framework and vehicle for compilation of lazy func-
tional languages. Thus, GRIN provides similar primitives as the G-machine does,
but does it on a slightly higher level. GRIN can be thought of as a procedural
language, where statements inside procedure bodies are essentially three-address
code. GRIN is quite flexible: it is possible to compile lazy functional languages
in a variety of ways, with different forms of tagging, unboxing, etc. The GRIN
code is actually quite a general form of intermediate language, which could be
a suitable intermediate form for compilers of many ‘heap based’ languages (e.g.
Lisp, SML, possibly even languages like Smalltalk), although GRIN has some
special provisions to accommodate for lazy evaluation.

We will continue to use the program in figure 1 as our running example.
Figure 7 shows how it can be translated into GRIN code.
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Fig. 5. Overview of the compiler

Sooner or later in the translation process, one has to be confronted with the
issue of updating due to call-by-need. We have chosen to make updating explicit
in the GRIN language. We currently fancy writing the GRIN programs as state
monadic [Wad92|, first order, strict, functional programs®. A simplified GRIN
syntax is given in figure 6.

The unit operation corresponds to the unit in the monad, and ; is the bind
operator. store, fetch and update are operations particular to this monad.
Compilers often represent the code with “three address statements”, and so do
we: assume the existence of primitive operators for basic values, like int_add,
int_gr, etc. By convention, the names of basic valued variables end with * .

First a note on terminology: A node value (or just node) is a tag (e.g., CInt,
CNil, Fupto) possibly followed by some arguments (pointers or basic values).

2 Although monads normally are higher order constructs, we consider the GRIN monad
as “built-in”. All other operations in GRIN are first order.



prog — { binding }+

binding — var { var } = ezp definition
erp — sexp ; Aval -> exp sequencing
| case var of alti |1 ... || alt, case
| if var then ezp else exp conditional
| serp operation

alt — val -> exp

sexp — var { val }+ application, function call

| unit wal return value
| store wal allocate new heap node
| fetch war load heap node
| update war wal overwrite heap node
| Cexp)

val - (tag { val }) complete node
| literal constant
| wvar variable
1 O empty

Fig. 6. GRIN syntax (simplified)

As the name suggests, node values quite often reside in the heap however,
node values may also be the value of local variables, and returned as values
by procedures, and so on (and may eventually be allocated to one or several
registers).

The GRIN language itself does not make any a priori interpretation of the
different node values, it is the GRIN program which interpret them as repre-
senting either ordinary constructor values of the source language (the tags CInt,
CNil, CCons) or unevaluated expressions (Fupto, Fsum). As a naming conven-
tion, we use node tag names beginning with C and F to denote ordinary data
constructors and unevaluated function applications, respectively.

Although the hbcce front end does a fair amount of strictness analysis, unbox-
ing, etc, for the sake of the exposition here, we assume a rather unsophisticated
translation, essentially in the same style as in the G-machine (ie, no fancy tagging
or unboxing, nor is any strictness analysis assumed).

In our basic translation scheme, each supercombinator becomes a GRIN pro-
cedure. Arguments of functions, evaluated or unevaluated, are put in ‘boxes’
in the heap, and pointers to these boxes are passed as the actual arguments.
Procedures return node values as a result (not a pointer to one in the heap!).

An essential feature of our approach is that eval, which is normally hidden in
the runtime system (or e.g. done as a ‘tagless’ pointer dispatch) can be written as
an ordinary GRIN procedure — and thus also is susceptible to transformation!
Figure 8 shows the accompanying eval procedure for our example.



main = store (CInt 1) ; \t1 —
store (CInt 10) 3 \t2 —
store (Fupto t1 t2) ; \t3 —
store (Fsum t3) ; \td —
eval td ; \(CInt r’) —
int_print r’
upto mn = eval m ; \(CInt m’) —
eval n ; \(CInt n’) —
int_gr m> n’ ; \b’—
if b’ then
unit CNil
else
int_add m’ 1 ; \ml’—
store (CInt mi’) ; \ml —

store (Fupto ml n) ; \p —
unit (CCons m p)

sum 1 = eval 1 ; \12 —
case 12 of
CNil -> unit (CInt 0)
CCons x xs -> eval x ; \(CInt x’) —
sum xs ; \(CInt s’) —
int_add x’ s’ ; \ax’—

unit (CInt ax’)

Fig. 7. GRIN code for the program in figure 1.

eval 1 = fetch 1 ; \12 —
case 12 of

CInt x’ -> unit 12

CNil -> unit 12

CCons x xs -> unit 12

Fupto mn -> uptomn ; \v —
update 1 v ; \() —
unit v

Fsum 1 -> sum 1 ; \v —
update 1 v ; \() —
unit v

Fig. 8. GRIN code for the accompanying eval procedure.

The standard eval takes a pointer to a node, and in the case of an unevalu-
ated function application, makes sure the node gets evaluated and updated; eval
finally returns the value thus pointed at. This means that eval must fetch the
node pointed at, and perform case scrutinisation. This case must enumerate
all possible nodes that eval might ever encounter (which without flow analy-
sis is easiest done by enumerating all nodes ever named). eval either returns



the C-node so encountered, or calls the appropriate procedure to evaluate an
application, and updates the F-node with the value returned.

5 The heap points-to analysis result

The transformation of the GRIN code, especially inlining of eval, is greatly
aided by a program analysis, which gives a safe approximation to what possible
nodes pointers might point to, at all points in the GRIN program. In this section
we describe more precisely what this analysis returns, for our running example.
Later we we describe how this analysis is implemented (section 8).

The main aim of our analysis is to determine, for each call of eval, a safe
approximation to what different nodes, eval might get when it fetches a node
via its argument pointer. But in effect, the heap analysis determines the abstract
values of all variables in the GRIN program, as well as an abstract description
of the heap.

In the concrete semantics, the value of a variable is either a basic value, a
pointer into the heap, or an entire node value (as returned by a procedure or

t1 > {1} m’> — { BAS} 12 — {CNil[],CCons[{1,5},{6}] }
t2 - {2} n’ — { BAS} x —{1,5}

t3 - {3} b’ — { BAS} xs — {6}

t4 = {4} mi’> — { BAS} x> — { BAS}

r’ —» { BAS} ml — {5} s’ — { BAS}

m —{1,5} p —{6} ax’ —» { BAS}

n - {2} 1 —>{3,6}

Fig. 9. Abstract environment of the analysis result.

1 — {CcInt[{BAS}] }

2 — {CInt[{BAS} }

3 — { Fupto[{1}, {2}],CNil[],CCons[{1, 5}, {6}] }
4 — { Fsum[{3}], CInt[{ BAS}] }

5 — {CInt[{BAS}] }

6 — { Fupto[{5}, {2}], CNi1[] CCons[{1, 5}, {6}] }
Fig. 10. Abstract heap of the analysis result (without sharing analysis).

1 —» {cInt[{BAS}] } shared
2 — {CInt[{BAS}] } shared
3 — {Fupto[{1},{2}] } unique
4 — {Fsum[{3}] } unique
5 = { CInt[{BAS}] } shared
6 — { Fupto[{5}, {2}] } unique

Fig. 11. Abstract heap of the analysis result (with sharing analysis).




eval). In the abstract semantics, all basic values are abstracted to a single one,
BAS.

For abstract locations we use a bounded domain of locations {1, 2, ... mazloc}
where mazloc is the total number of store statements in the GRIN program.
Each occurrence of a store statement generates the same abstract location every
time it is executed. It is as if each store statement had its own little heap (a
feasible implementation), and the abstract pointer is simply the identity of the
heap, thus abstracting away from the relative position in this ‘little’ heap. The
abstract values of pointer valued variables, and arguments of nodes, are sets of
abstract locations. See also section 8 and figure 16.

Figure 9 shows the abstract environment derived for our running example
(the GRIN program in figure 7). The store statements of the program have
been numbered 1...6, thus the abstract values of variables t1, t2, t3, t4, m1,
andpare{1},{2},.., {6}

The analysis also returns an abstract heap, which maps abstract locations to
abstract node values. Figure 10 show a possible abstract heap derived for our
running example (this will be refined shortly).

Consider the eval of min the upto procedure. The abstract value derived for
mis {1,5}. Both 1 and 5 in the abstract heap are CInt nodes; thus this eval is
trivial, the value is already evaluated.

Now consider the eval of 1 in the sum procedure. The abstract value derived
for 1is { 3,6 }, and according to figure 10 both these locations might be either
Fupto, CNil, or CCons nodes.

It has turned out to be quite easy to incorporate a sharing analysis into
the points-to analysis. Not only does this provide useful information for update
avoidance, it also serves to improve the precision of the points-to analysis as
such!

Thus, in actual practice our analysis also returns a third component, a sharing
table, which maps abstract locations to its sharing properties: True if the abstract
location is shared, i.e., if a concrete instance of the abstract location may be
subject to a fetch more than once, False otherwise. In our example, and in
general at the stage of compilation where points-to analysis is currently applied,
it is only eval that performs fetch operations; however, we might also want
to analyse the program later in the process where fetch operations can occur
explicitly.

Figure 11 shows the abstract heap the analysis derived for our running ex-
ample, together with its sharing information. Thus we can see that abstract
locations 3 and 6 now only contain Fupto nodes, and that these locations are
unique (non-shared). The explanation for this is that both these nodes are born
as Fupto nodes, and even though eval might update such a concrete location
with either a CNil or a CCons, this will never be visible. A location may only
become shared if it is a possible value of a nonlinear variable (i.e., used more
than once). The nonlinear variables in our example are: m, n, and m’.

The abstract environment of our running example does not become modified
by the use of a sharing analysis part; but in general it might well be.



6 GRIN transformations

6.1 EVAL inlining

After the heap points-to analysis, the next step in the compilation process is to
inline all calls of eval. In general, one might replace a call of eval by its entire
body (see figure 8). This would, however, in most cases be blatantly wasteful,
since at each eval point only a (small) subset of the nodes can be present  the
result of the points-to analysis gives a safe subset. Further, one may also omit
the accompanying update operations if according to the sharing information the
corresponding abstract locations are unshared.

Let us discuss the most general cases first, from the point of view of our
running example. Consider the eval 1 in the sum procedure, and let us assume
for a moment that we do not have any sharing information, and that according
to the analysis the possible nodes encountered here are Fupto, CNil and CCons.
The code:

eval 1 ; \12 — rest

could then be expanded into (by replacing the call by the body of eval, substi-
tuting actual arguments for formal ones, and deleting impossible cases):

(fetch 1 ; \12 —
case 12 of
CNil -> unit 12
CCons x xs -> unit 12
Fuptomn -> uptomn ; \v —
update 1 v ; \() —
unit v
) 5 \12 — rest

However, as can be seen from figures 9 and 11, the information actually derived
by the analysis for this case is that 1 points to a Fupto node, and it is unique
(unshared). This information can be used for two things:

— since there is only one node, Fupto, no case analysis needs to be done,
— since the pointer in known to be unshared, no updating needs to be done.

So, the “eval ; \12 — rest” can actually be inlined into the much better:

( fetch 1 ; \(Fupto m n) —
upto m n
) 5 \12 — rest

The second eval appearing in sum, the eval x, is much simpler in character.
Since all the nodes that x might point to (in fact there is only one, CInt) are
ordinary value nodes, eval does not have to call any evaluation procedure to get
the actual value, instead a simple fetch will do. Figure 12 shows the complete
sum procedure with both evals inlined accordingly.

The inlining of eval does not actually happen in one ad-hoc step as indicated
here. Rather, the resulting inlining of eval shown above is the result of a large
number of small transformations  see next section.



sum 1 = (fetch 1 ; \(Fupto m n) —

upto m n
) 3 \12 —»
case 12 of
CNil -> unit (CInt 0)
CCons x xs -> fetch x ; \(CInt x’) —
sum xs ; \(CInt s’) —
int_add x’ s’ ; \ax’—

unit (CInt ax’)

Fig. 12. The procedure sum with its evals inlined.

6.2 The GRIN transformation machinery

Although the eval inlining above is a very important transformation, it is, in
fact, only a small part of a large number of GRIN program transformations. The
main idea behind the GRIN transformation machinery is to use many, each very
simple, GRIN source-to-source transformations. Each transformation is of course
correctness-preserving and hopefully performance-improving. Even though each
single transformation will make only a very small change, they will, taken to-
gether, produce greatly simplified and optimised GRIN code.

Many of the transformations are very “local” in the sense that they will try to
find a small sub-expression, of a larger GRIN expression, that matches a certain
pattern, and if found, transform it to a slightly different sub-expression. Other
transformations are a bit more involved. Remember also that we assume that
the front end has already transformed the program “as much as possible’ on the
functional level, and hbcc does indeed implement most “standard” functional
transformations.

6.3 Example transformations

Rather than going through all transformations, we will concentrate on a few
examples. Some transformations are rather general in nature, some are more
specialised. We will show a few of each kind.

Monad unit laws — copy propagation. Since we use a monad to structure
GRIN we can directly use the monad laws [Wad92], that all monads must satisfy,
as transformation rules. The left unit monad law is usually written as (we use ;
as the bind operator, as in GRIN):

(unit x) ;m = mx

We can get a more useful transformation (denoted =) by instantiating m as a
binding:



(unit x) ; m
= { instantiate m }
(unit x) ; (\v -> k)
= { use unit law }

(\v -> k) x
= { B reduction }
k[x/v]

Te., we can always delete a unit to the left of a binding and simply do a
substitution instead, i.e., we have eliminated a “copy”. Note that x and v above
must not necessarily be variables, they could equally well be complete nodes:

unit (CInt a’) ; \(CInt b’) ->k = kl[a’/b’]

There is also a corresponding right unit monad law, which will give rise to
the following transformation:

m; \v ->unit v = m

Bind associativity. In any monad the bind opera-
tor must be associative [Wad92], and this turns out to
be very useful for transformation purposes. During the AN
transformation process it is a good idea to keep the g h
GRIN code normalised, i.e., keep the GRIN syntax tree 4
“right skewed” with only bind operations as its spine. Un- ,
fortunately this property can be destroyed by any trans- PN
formation that introduces new code, for example inlining
a call to eval. Say, for example, that we have the code U
“g ; h” and we want to replace g by the sequence, “m ; PN
k”. Then, we would like to restructure the code as shown o
in figure 13, to keep the right skewed property.

But this is exactly what the associativity monad law
tells us! Shown in GRIN terms, the general transforma-
tion is:

(m; \a->ka) ;\b->hb = m; (\a->ka; \b->hb)

Fig. 13. Normalisation

Unboxed values. Our current front end, hbcc, uses the unbozing methods
described in [PJLI1]. It is often very good at transforming strict function ar-
guments and function results to unboxed representations. However, it has some
shortcomings. The method in [PJLI1| cannot unbox a function that returns a
value of a datatype whose (single) constructor takes more than one argument,
like for example a pair. There is simply no way to express that in functional
code, a function must always return exactly one value. Unboxing function argu-
ments of such types (single constructor, more than one argument) is mentioned
in [PJLI1], but unfortunately not implemented in hbce. As an example, a strict
pair argument that is unboxed can be replaced by two arguments, one for each
component of the pair, a transformation sometimes called arity raising. A final
shortcoming of the unboxing done by hbcc is that it is only attempted in rather
restricted contexts (sufficiently strict etc).



In GRIN there is no problem handling any of the cases above. As an example,
we can express that a function returns an unboxed pair, i.e. simply returns
the two components of the pair (in the final code, this will be done using two
registers). To show our transformation, we will give an example of how a function
that returns a boxed integer can be changed to return an unboxed integer. In
GRIN, a function that returns an integer will do it using the unit operation.
This means that the actual tag is visible, so we can simply remove it:

unit (CInt x’) = unit x’

Of course, we will now also have to change all calls to the function. Assuming
the function we have just unboxed was called f, we will transform all calls to f
(in any context):

fas = £ as ; \y’ -> unit (CInt y’)

Many of the "extra" units and lambdas that might get inserted are trivially
eliminated using the monad law transformations described above. As an example,
assume that the above call to £ appeared right before a lambda pattern:

f as ; \(CInt a’) ->m
= {unbox f }

(f as ; \y’ -> unit (CInt y’)) ; \(CInt a’) ->m

= { associativity + left unit laws }

f oas ; \y’ -> mly’/a’]

The effect of this will be to eliminate all “tagging costs” associated with calls
to f. Some special care has to be taken with tail calls, but they can be handled
as well. Unboxing procedure arguments, and types where the node have several
arguments can be done in a completely analogous way.

Simplifying nodes. Some of the GRIN transformations have more the na-
ture of simplifications rather than optimisations. An example of the former is a
transformation we call vectorisation. The aim of vectorisation is to make GRIN
variables that contain node values (i.e. a tag possibly with arguments), more
concrete by transforming to multiple variables, each containing a simple value
(basic value or pointer). Consider the following:

foo 1 = fetch 1 ; \12 ->
case 12 of
CNil -> nil_ body
CCons x xs -> cons_ body

This could be a function with a single list argument, where the points-to analysis
has shown that the argument will always be evaluated (so all that remains of the
eval is a fetch). If we look at the 12 variable above, it will contain a complete
node, either a CNil tag or a CCons tag and two arguments. We will now replace
12 with three simple variables (this is what we call a vector):

foo 1 = fetch 1 ; \(t? a as) ->
case (t’ a as) of
CNil -> nil_body



CCons x xs -> cons_ body

In fact, we consider the actual tags to be basic values. Hence the variable t?,
it will bind the tag itself. Note that if t’ is CNil, then a and as are undefined.
This will hopefully be a bit more clear after the right hoisting transformation
below. Before that, though, we will simplify the vectors (variable nodes) that we
just introduced. The case expression in our example depends only on the tag, so
let us make that explicit:

foo 1l = fetch 1 ; \(t’ a as) ->
case t’ of
CNil -> nil body
CCons -> cons_bodyla/x,as/xs]

After this transformation, all case expressions will be only a “case test”, they will
not bind any variables.

Right motion hoisting. The fetch operation above will load a complete node
from memory, and bind its various components to the three variables.? To further
simplify the GRIN code, we now split the fetch into its three components:

foo 1 = fetch 1[0] ; \t? ->
fetch 1[1] ; \a ->
fetch 1[2] ; \as ->
case t’ of
CNil -> nil body
CCons -> cons body*

By the notation “1[n]” we mean the n:th component of the node pointed to
by 1. We now see that since a and as are not used in the CNil branch of the
case expression, their corresponding fetch operations can be moved (or hoisted)
into the CCons branch:

foo 1 = fetch 1[0] ; \t’> ->
case t’ of
CNil -> nil body
CCons -> fetch 1[1] ; \a ->
fetch 1[2] ; \as ->
cons_ body

We call this transformation right motion hoisting. It is interesting to compare this
to the let-floating described in [PJPS96]. One of the let-floating variants, where a
let-binding is floated into a case branch, does look quite like our transformation
(one difference is of course that a let will allocate storage in the heap, whereas
our fetch will only read from the heap). However, the code above is an example

* Note that this does not imply anything about the way a node actually gets stored
in the heap! It only says that there should be some way to extract the tag, etc.
* We omit the substitution henceforth.



of a situation where we benefit from the extra “low level control” of the GRIN
code. The transformation example above is not, possible on the “functional level”,
because there is no way to distinguish between the different components of the
value (the node variable 1 above).

A good thing about this transformation is that it can decrease memory band-
width, by not fetching unnecessary values. However, the transformation might
also have a negative impact on execution time. If the CCons branch is the most
common one, and if the values a and as are needed early in cons_ body, it might,
in fact, be better to prefetch them before the case test (for reasons of mem-
ory latency). On the other hand; if the tag is already loaded, the rest of the
node is probably already in the cache, so subsequent loads will be cheap. More
experiments are needed to determine if this optimisation really is beneficial.

More transformations. The effect of all GRIN transformations, of which we
have only shown a few, is to gradually turn the GRIN code into a very simple
form, with all operations made explicit. This will make the actual code generation
(to real machine code) quite simple (see section 9).

7 Higher order functions

True to the GRIN philosophy, also function objects are represented by node
values. Just like the G-machine and most other combinator-based abstract ma-
chines, function objects in GRIN programs exist in the form of curried applica-
tions of functions with too few arguments. Consider again the function upto of
our running example, which takes two arguments. We represent the function ob-
ject of upto by a node Pupto_2, and an application of upto to one argument by
a node Pupto_1 e. The naming convention we use is that the prefix P indicates
a partial application, and _2 etc. is the number of missing arguments.

In analogy with the generic eval procedure, programs which use higher or-
der functions must also have a generic apply procedure, which must cover pos-
sible function nodes that might appear in the program. An example is shown
in figure 14. apply returns the value of a function value (node) applied to one
additional argument. Generally, apply just returns the next version of the func-
tion node with one more argument present, except when the final argument is
supplied: then the call of the procedure takes place.

GRIN does not provide a way to do a function application of a variable in
a lazy context directly, e.g., build a representation of £ x where f is a variable,
instead a closure must be wrapped around it; this is the purpose of the ap2
procedure.

In the further compiling of programs which uses higher order functions, also
apply calls are inlined, in much the same way as eval calls.

If the application in the original program has more than one argument, sev-
eral apply statements in sequence must be used. This arrangement is concep-
tually simple (a great advantage when it comes to the points-to analysis). Al-
though it implies the unnecessary construction of intermediate function values,



apply f x = case f of
Pupto_2 -> unit (Pupto_1 x)
Pupto_1 y -> upto y x

Fig. 14. The apply procedure.

twice f x = store (Fap2 f x) ; \tl1 —
eval f ; \f2 —
apply f2 t1

ap2 f x = eval f ; \t2 —
apply t2 x

Fig. 15. The GRIN code for the function twice f x = £ (f x).

a sequence of inlined applys can easily be simplified to avoid these intermediate
function values.

8 The innards of the points-to analysis

When we designed our points-to analysis, an overriding design goal was that it
had to be very fast, in order to be able to analyse large entire programs at once

if it had to be done at the cost of some precision, then so be it! The result
is an analysis which we think is no costlier than, e.g., live variable analysis. We
accomplish this by the following means:

— a single abstract heap approximates the real heap at all times and at all
program points: this makes the analysis flow insensitive,

— a single abstract environment approximates all local environments; this ar-
rangement does not actually impose any extra approximation, since all local
variables are uniquely named and an abstract local environment is always a
subset of this ‘global’ abstract environment,

— the analysis is insensitive to calling context: a procedure parameter gets its
abstract value by ‘unioning’ the corresponding actual parameters at the call
sites, and the same abstract return value is returned as a result of all calls
for each procedure.

As mentioned in section 5, we also include a sharing analysis into the points-to

analysis machinery. Not only does this provide desired sharing information for

update avoidance, it also serves to improve the precision of the points-to result!
The analysis works in two steps:

— setting up a system of data flow equations, for the variables of the abstract
environment and the abstract heap,
— solving the equations.



Loc = 1,2,... “Cons points”
Val = {BAS} + Loc “Small” values

V = P(Val)
Node = Con x V* Node values

N = P(Node)

Ife;p = Loc - N
VarVal =V UN Abstract values of variables

Fig. 16. Abstract domains for the heap points-to analysis.

t1={1} m ={BAS} x =12/ CCons | 1
t2={2} n’> ={BAS} xs =12 | CCons | 2
t3={3} b’ ={BAS} x’ ={BAS}

ta={4} m1’>={BAS} s’ ={BAS}
r’={BAS}ml ={5} ax’ = { BAS}

m =tilml p ={6} ru = {CNil[],Ccons[m,p]}
n =t2Un 1 =+t3U xs rs = {CInt[{BAS}]}

12 = EVAL(FETCH heap1)

Fig. 17. Abstract environment equations.

heap = [1 — {CInt[{BAS}] }
2 — {CInt[{BAS}] }
3 — {Fupto[t1,t2]} U ru
4 — {Fsum[t3]} Urs
5 = {CInt[{BAS}] }
6 — { Fupto[m1,n]} Uru |

Fig. 18. Abstract heap equations.

EVALS = {tagL|tagL € S A is-value-node tag}

FETCHheap {l1,...,l,} = heaplliU...Uheap |l

{... tagvr,...,vi,...],. ..} Ltagli = v

[ agion, o w o Y UL tagly g e} =
{...taglzr1 Uy1,...,z; Uy;,.. ],...}

Fig. 19. Utility functions.

We first describe the basic machinery without the sharing analysis part, and
then discuss the modifications needed to implement the sharing analysis, and to
deal with higher order functions.

8.1 The basic analysis machinery

Deriving the equations. From the GRIN program, we set up a system of
data flow equations which describes the values of the variables in the abstract
environment, and the locations of the abstract heap. Figures 17 and 18 shows
these equations for our running GRIN program example (figure 7).



The abstract domains are summarised in figure 16. We now proceed to explain
each of the different forms of equations.

The abstract environment contains the variables of the GRIN program, plus
one variable for each procedure, which denotes the return value of such a call:
ru for upto, and rs for sum.

To begin with, quite a lot of the variables can immediately be seen to have
the value { BAS}.

As mentioned, we use a single fixed abstract location for each store state-
ment: hence the equations for t1, t2, t3, t4, m1, and p in the environment part.
The heap variable has at each location the value of the corresponding store,
possibly unioned with one more item. If an abstract location has the value of a
node which represent an unevaluated function application, in our case Fupto or
Fsum, we simply set these locations also to have the value of the corresponding
return values, since such nodes will most likely be updated with these eventually:
hence the union with ru and rs respectively.

Parameter variables, like m, n, and 1, has the value of the union of all the
actual arguments of the applications of the program, both direct calls, e.g.,
sum xs, or ‘lazy calls’ .e.g., store (Fupto ml n). So for instance, m is the first
argument of upto, and hence gets the value t1Um1 from the two different stores
of Fuptos.

The variable 12 holds the value of an eval: this is simply obtained by taking
the union of the value of the abstract locations which 1 might point to (done
by FETCH), and then extracting those nodes that represent value constructors
(done by EVAL).

Values for variables which are bound in a case, like x and xs, get their
abstract value by extracting out the corresponding component value for the
variable being cased upon.

In taking the union (U) of sets of node values, these are unioned tag-by-tag
so that in the resulting set there is only one element for each node tag (see
figure 19). Unions of sets of abstract pointers are like ordinary unions.

Solving the equations. Having obtained the data flow equations for the
points-to analysis, the natural way of solving these equations is by fixpoint it-
eration, starting with an empty abstract environment and an empty heap, and
apply the equations until a fixpoint is reached.

In our implementation, convergence is speeded up by using a ‘depth first
ordering’ [ASU86, sec. 10.9] of the variable equations. Using this for our example,
it takes only 4 iterations to converge to a fixpoint.

8.2 Adding sharing analysis

As mentioned already in section 5, a sharing analysis can easily be incorporated
into the points-to analysis by adding a third component, suitably called a sharing
heap, a mapping from abstract locations to a boolean value: True if an instance
of this abstract location might be shared, False if it cannot be.



The initial value of the sharing heap is all Falses. The value of the sharing
heap is awkward to express in equational form, instead we do as follows: during
an iteration, an abstraction location is set to shared, i.e. True, either if it might
be pointed to by a nonlinear variable, or from another shared location.

In the abstract heap the return value part, e.g., ru of location 3, is only ’ed
if the same abstract location becomes shared.

The semantic function EVAL also needs to be modified: it cannot just take
the subset of the node values which represent proper values, but needs to extract
‘by itself’ from elsewhere what the values of an Fupto application, etc, might
be. We omit those details here.

8.3 Higher order functions

Higher order functions cause no fundamental difficulties to add into our analysis
— only practical ones!

The abstract value of an apply f a depends, obviously, on the abstract value
of a: if the value of £ contains e.g., a Pupto_2 node, then the apply contains
Pupto_1 a where a is the abstract value of a; if the value of f contains e.g., a
Pupto_1 b node, then the value of the apply contains whatever upto returns
since the application becomes saturated at that point (c.f. figure 14).

Previously, a parameter of a procedure gets its abstract value from the union
(U) of some other variables for example 1 = t3 L xs. Unfortunately, due to the
apply calls, the equations for the variables are no longer this static. Now, if a call
of some procedure occurs as a result of an apply call, then the actual arguments
of those call need to be LWed with the abstract values of the corresponding
parameter variables.

We have solved that problem practically as follows. A single variable, let us
call it aa here, is used to collect all the possible ‘extra’ arguments as a result of
the applys in the program. It is convenient to represent these extra arguments
by closure nodes for those applications, e.g., Fupto z; . If there is an apply
a bin the GRIN program, then there is also an APPLICATONS a b being [’ed
to the rhs of aa. If a call of, e.g., upto could occur as a result of that apply
(in which case the value of a need to contain a Pupto_1 ¢ node), then the value
of APPLICATIONS a b should contain a Fupto c¢ b node. Finally, the variable
for the parameter need to extract the relevant part of aa: the first argument
of upto, for example, need to add aa | Fupto | 1 to the right hand side of its
equation.

9 RISC code generation

After all GRIN transformations, the resulting code is translated into machine
code for a hypothetical RISC machine (load-store architecture) assuming an
infinite number of available virtual registers. These virtual registers will later
be mapped onto real machine registers by the register allocator. The translation
to RISC code is rather straightforward, since the final GRIN code is in a very
simple form.



Each procedure is represented as a flow graph of basic blocks. The (intraproce-
dural) flow graphs are at this stage always DAGs, since GRIN can not represent
(intraprocedural) loops. Later in the compilation, tail recursion optimisations
will indeed, turn tail calls (to the same function) into “real loops” in the flow
graph. On the interprocedural level, i.e., between procedures, the flow graphs
are linked together using call and return edges.

Throughout the entire back end we do a lot of book keeping and analy-
sis aimed at determining enough information about what registers contain root
pointers, i.e., need to be followed during GC. For space reasons we will have to
postpone a description of how this is done to a future paper.

10 Interprocedural register allocation

We believe good register allocation to be a vital optimisation. For reasons ex-
plained in section 2, we also believe it to be important to do interprocedural
register allocation for lazy functional languages. Or, put in another way, what
we need, to implement these languages efficiently, is to minimise the procedure
call and return overhead, and doing interprocedural register allocation can be a
good method for achieving that [Cho88].

Our register allocation algorithm was described in [Boq95a,Boq95b], and, for
space reasons we will not explain it in detail here (although it has changed a
bit since then). In summary, it is an interprocedural graph colouring algorithm,
based on optimistic graph colouring [BCKTR89|, but with several additions; e.g.
interprocedural coalescing and a restricted form of live range splitting.

Cheap procedure calls. The register allocator helps reducing the procedure
call penalty in the following ways:

— It is very successful in passing procedure arguments in registers, using tailor-
made argument registers for each procedure.

— It often achieves good targeting, i.e., a value that later will be used as ar-
gument in a call, will actually be calculated in the correct register. In most
cases, no extra “register shuffling” will be necessary at the call site.

— Likewise with procedure return values (we will often use more than one
register to return a result).

— Local variables that are live® across a call site, can often be kept in a register
during the call. This should be seen in contrast to a global register allocator,
which normally will have to save and then restore certain registers around
each call site, if they risk being clobbered by the callee.

Graph colouring. The main task of the register allocation algorithm is to
build an interference graph (conflict graph) for the complete program, and then
colour it. We initially assume that all variables are allocated to wirtual registers.

5 A variable is said to be live at a certain point if its value may be used on some
execution path leading from that point.



If the allocator fails to find a colour for some variable it will be spilled, i.e., the
value kept in memory instead, or splitted, i.e. kept in different registers during
different periods. The “variables”, that participate in the colouring are: proce-
dure arguments and return values, local variables and all kinds of temporaries
introduced by the compiler.

11 RISC optimisations

The RISC optimiser implements a number of different low level optimisations.
Naturally, we implement the “standard” optimisations for lazy functional lan-
guages, like heap pointer and tail call optimisations. We also optimise stack usage
(the stack pointer, frame building and the return address) using a shrink-wrap
technique similar to the one used in [Cho88] to optimise the use of callee-saves
registers. For example, the return address register,® can be seen as a callee-saves
register, i.e. we need not save it until we are certain to do a new procedure call.
In a similar way, we can avoid creating a stack frame,” until it is absolutely
needed. The different stack optimisations, together with tail call optimisations,
often succeed very well in creating small tight loops for tail recursive functions.

Other optimisations are of a more general kind, like instruction scheduling
and branch optimisations. The Sparc processor is a delayed-load architecture
with call and branch delay slots, which means that it is important to separate
loads instructions and uses of the loaded result, and to fill delay slots with useful
instructions. We use a rather standard instruction scheduler to accomplish this,
in the style of [GMS86].

Currently, most our RISC optimisations are placed after the register alloca-
tion (see figure 5), which might seem a bit odd in comparison with conventional
compilers where normally many optimisations are done before the register allo-
cation. However, in our case it turns out that many of the standard optimisations
are subsumed by transformations already done at the GRIN level.

12 Measurements

We have compared our back end to the Chalmers and Glasgow Haskell compil-
ers, hbc and ghc, respectively. Our implementation is still rather experimental,
and unfortunately we have not been able to compile any large programs. There-
fore, the measurements shown here should be taken for what they are, only
toy programs experiments. On the other hand, one positive thing about having
small test programs is that it is possible to examine the code produced in var-
ious stages of the compilation, to get “fair” tests between compiler “sub-parts”.
The measurements in figure 12 show four example programs: nfib 32, sieve2
(summing all primes below 10000), fqueens (the queens problem of size 10, a

3

first order program) and hqueens (ditto, but using higher order functions). The

6 Assuming a RISC style jump-and-link instruction used for doing procedure calls.
" On the Sparc we use the standard system stack.



hbc? GRIN hbcc+GRIN ghc
instructions 341.9 123.4 81.1 -
nfib stack 84.6 28.2 21.1 -
time 7.6 4.6 1.8 2.2
instructions 72.9 24.2 24.2 -
sieve2 stack 17.2 3.1 3.1 -
time 3.2 1.7 1.9 3.5
instructions 174.3 49.4 48.9 -
fqueens stack 44.6 3.0 3.0 -
time 5.1 2.0 1.9 4.4
instructions 198.3 - 57.8 -
hqueens stack 50.8 - 3.3 -
time 5.0 - 2.0 4.1

% hbc-0.9999.1 -0 -msparc8
b ghc-0.29 -02 -fvia-C -02-for-C

Fig. 20. Performance of some small programs.

column marked just GRIN means that handwritten GRIN code is input to our
back end. The intention of this is to create a fair comparison of hbc’s and our
back ends. We have made sure that this code is written exactly as what is input
to hbc’s back end, i.e., the same strictness and boxity, and it reads and writes
exactly the same nodes in the heap. In other words, the hbc and GRIN columns
will perform exactly the same graph reduction.

The column marked hbce+GRIN shows our back end together with the hbcc
front end, and is supposed to be a more fair comparison against the ghc column.
Ghc and hbcc should be roughly comparable as front ends.

Our main measurements are done using a tool to collect dynamic instruction
counts.® We show the total instruction count and the total number of stack
references (loads + stores), all in millions of instructions. We also include some
timings.” However, given how hard it is to accurately measure time on a UNIX
system, especially for such small programs, these should be seen mainly as a
reference. Garbage collection times are not included (for any compiler).

If we look at the total instruction count, we can see that the GRIN column is
roughly 3 times as fast as hbc, i.e. our back end compared to the hbc back end.
Moving to the hbcc+GRIN column, we see that we get slightly better yet, around
3-4 times fewer instructions executed compared to hbc. The total instruction
count also correlate rather well with the timings. Comparing hbce+GRIN with
ghe, we are roughly twice as fast as ghc for all the examples except nfib.

We have included stack reference counts as a measure on how well our regis-
ter allocator succeeds, since good register allocation typically means that stack
allocated variables (including temporaries and function parameters and results),
have been allocated to registers instead. Looking at the figures, we see a dra-

8 Unfortunately, we have not yet been able to make this tool work for ghc binaries.
9 User times on a 40MHz SuperSparc with 1Mb external cache and 80Mb memory.



matic reduction in the number of stack references for our back end compared to
hbe, ranging from 70% to 95% eliminated stack references.

13 Related work

Interprocedural optimisation. Recently, various interprocedural optimisa-
tions have gained increasing popularity, simply because they are much more
powerful than their corresponding global (i.e., per procedure) optimisations.
Practical difficulties with whole-program optimisation can be reduced by the
use of an integrated programming and optimisation environment, like the R"
environment [CKT86].

For a lazy language like Haskell, compilers typically compile one module at
a time. At first sight, this might appear as a good opportunity to optimise
several procedures at once. However, it seems as if this does not apply very well
to low level optimisations, like those presented in this paper, where the actual
dynamic control flow is important, as explained in section 2. In a lazy language,
a function that is local to a module in the source code, might very well escape
from the module at run time (if it is built into a closure) and then be called from
somewhere else (using eval).

GRIN and transformations. Our intermediate code, GRIN, is in its essence
not very different from any other intermediate code used to implement lazy
functional languages (usually called code for a particular abstract machine); e.g.
the G-machine [Joh84], the ABC-machine [SNvGP91] and TIM [FW87]. In some
sense, GRIN is on a slightly “higher level” than the machines mentioned above.
On the other hand, compared to the STG language [PJ92], GRIN is more “low
level” which has proven itself useful in some transformations (see section 6).

The idea of “compilation by transformation” is not new, see for example
[KH89,App92]. In particular, the idea of using a large number of very small
transformations is similar to what is used by the simplifier [PJ96] in the Glas-
gow Haskell Compiler. The main difference compared to our transformations is
that the GRIN code is a low level code compared to both the Core and the
STG language used by ghc (they are both essentially 2:nd order A-calculus, the
STG language is on a slightly lower level). A typical example of the difference is
that we, in GRIN, can “inspect” a node value (closure) without having to force
(evaluate) it, something which is not expressible in the STG language.

It may be an illusion, but the monadic presentation of GRIN code gives it
a very “functional flavour”, and hence a nice framework for doing analysis and
transformations.

The relationship between GRIN and Continuation Passing Style (CPS) [AJ89],
can be compared to programming using either monads or continuations, i.e., it
is probably mainly a matter of taste. One might also compare GRIN to Static
Single Assignment (SSA) code [CFR'91|, which has received recent popular-
ity for implementing imperative languages (mainly Fortran). In GRIN, we will
get single assignment “for free”, i.e. all variables in a GRIN program are only
assigned once, yet another example of the “functional flavour” discussed before.



Heap points-to analysis. A great deal of work has been done on points-
to analysis of more conventional languages see, for example, the overview in
[SHI7]. However, with the notable exception below, none other seem to have
addressed the problem in the context of lazy graph reduction.

The work by Karl-Filip Faxén [Fax95,Fax96] is quite similar in scope to ours,
and he addresses many of the same problems as we do. Central to his work is
a type based program analysis, called flow inference, which analyses programs
expressed in his intermediate language, Fleet (Functional Language with Explicit
Evals and Thunks). As the name suggests, he analyses programs on a higher level
than our GRIN code. His flow inference derives information quite similar to ours,
and he uses the information to eliminate evals and thunks, to do unboxing, and
update elimination.

Register allocation. To our knowledge, interprocedural register allocation has
not been applied previously to code generated from a lazy functional language.
It has been applied to other kinds of languages though, e.g. to Lisp [SH89] and
to C [Cho88,Walg6].

14 Conclusions and further work

Our preliminary results look very promising, but there is a lot of implementation
work that needs to be done before we can say if our back end really can be made
practical. We can not yet say how our interprocedural approach will scale up to
large programs. Two possible problem areas are the heap points-to analysis and
the interprocedural register allocation. Although there are various methods for
trading exactness for speed in both these cases, it is difficult to predict exactly
how the code quality will be affected by less precise program information.

The GRIN back end described in this paper constitutes quite a heavy basic
machinery. But once that has come off the ground, many other opportunities for
further optimisations present themselves:

So far, the only use of inlining in our GRIN transformations are to unfold
calls to eval and apply, but we plan to experiment with more aggressive meth-
ods. Inlining of conventional calls, together with simplification of the resulting
GRIN code, might effectively give a compile-time version of the vectored return
mechanism of the STG machine [Joh91].

As an area for further work, we would like to investigate which of the trans-
formations usually done closer to the front end, e.g., ghc’s (or hbee’s) “functional”
transformations, that could be profitably done on the GRIN level: for example
unboxing, deforestation, firstification, possibly even strictness analysis!

The simplifier in ghc is a kind of “transformation engine” that will apply (and
repeat) transformations rather automatically. We plan to implement a similar
machinery in our back end.

Doing aggressive optimisations like the ones described here might very well
turn out to be impractical to do on large entire programs. We might consider a
profiling based approach, where the optimisation effort is spent where it really
matters for the overall execution speed of the program.
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